Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations
نویسندگان
چکیده
In this paper, we extend to the time-harmonic Maxwell equations the p–version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
منابع مشابه
Resolution of the time-harmonic Maxwell equations using discontinuous Galerkin methods and domain decomposition algorithms
We present numerical results relative to the resolution of the time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. First, a numerical study of the convergence of discontinuous Galerkin methods which compares different strategies proposed in the literature for the elliptic Maxwell equations, is performed in the two-dimensional case. We also introduce a Schwarz-type dom...
متن کاملThe hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations
The local discontinuous Galerkin method for the numerical approximation of the time-harmonic Maxwell equations in a low-frequency regime is introduced and analyzed. Topologically nontrivial domains and heterogeneous media are considered, containing both conducting and insulating materials. The presented method involves discontinuous Galerkin discretizations of the curl-curl and grad-div operato...
متن کاملSolution of the time-harmonic Maxwell equations using discontinuous Galerkin methods
This work is concerned with the numerical solution of the time-harmonic Maxwell equations discretized by discontinuous Galerkin methods on unstructured meshes. Our motivation for using a discontinuous Galerkin method is the enhanced flexibility compared to the conforming edge element method [12]: for instance, dealing with non-conforming meshes is straightforward and the choice of the local app...
متن کاملA domain decomposition strategy for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method
A domain decomposition strategy is introduced in order to solve time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. Its principles are explained for a 2D model problem and its efficacy is demonstrated on 2D and 3D examples.
متن کاملDiscontinuous Galerkin discretizations of Optimized Schwarz methods for solving the time-harmonic Maxwell equations
We show in this paper how to properly discretize optimized Schwarz methods for the time-harmonic Maxwell equations using a discontinuous Galerkin (DG) method. Due to the multiple traces between elements in the DG formulation, it is not clear a priori how the more sophisticated transmission conditions in optimized Schwarz methods should be discretized, and the most natural approach does not lead...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 82 شماره
صفحات -
تاریخ انتشار 2013